1,523 research outputs found

    Changes in Alprazolam Metabolism by CYP3A43 Mutants

    Get PDF
    Alprazolam is a triazolobenzodiazepine which is most commonly used in the short-term management of anxiety disorders, often in combination with antipsychotics. The four human members of the CYP3A subfamily are mainly responsible for its metabolism, which yields the main metabolites 4-hydroxyalprazolam and α-hydroxyalprazolam. We performed a comparison of alprazolam metabolism by all four CYP3A enzymes upon recombinant expression in the fission yeast Schizosaccharomyces pombe. CYP3A4 and CYP3A5 show the highest 4-hydroxyalprazolam production rates, while CYP3A5 alone is the major producer of α-hydroxyalprazolam. For both metabolites, CYP3A7 and CYP3A43 show lower activities. Computational simulations rationalize the difference in preferred oxidation sites observed between the exemplary enzymes CYP3A5 and CYP3A43. Investigations of the alprazolam metabolites formed by three previously described CYP3A43 mutants (L293P, T409R, and P340A) unexpectedly revealed that they produce 4-hydroxy-, but not α-hydroxyalprazolam. Instead, they all also make a different metabolite, which is 5-N-O alprazolam. With respect to 4-hydroxyalprazolam, the mutants showed fourfold (T409R) to sixfold (L293P and P340A) higher production rates compared to the wild-type (CYP3A43.1). In the case of 5-N-O alprazolam, the production rates were similar for the three mutants, while no formation of this metabolite was found in the wild-type incubation

    Development of an HPLC-MS/MS Method for Chiral Separation and Quantitation of (R)- and (S)-Salbutamol and Their Sulfoconjugated Metabolites in Urine to Investigate Stereoselective Sulfonation

    Get PDF
    The aim of this study was to develop and optimize a chiral HPLC-MS/MS method for quantitative analysis of (R)-/(S)-salbutamol and (R)-/(S)-salbutamol-4′-O-sulfate in human urine to allow for bioanalytical quantitation of the targeted analytes and investigations of stereoselectivity in the sulfonation pathway of human phase Ⅱ metabolism. For analytical method development, a systematic screening of columns and mobile phases to develop a separation via enantiomerically selective high performance liquid chromatography was performed. Electrospray ionization settings were optimized via multiple-step screening and a full factorial design-of-experiment. Both approaches were performed matrix-assisted and the predicted values were compared. The full factorial design was superior in terms of prediction power and knowledge generation. Performing a longitudinal excretion study in one healthy volunteer allowed for the calculation of excretion rates for all four targeted analytes. For this proof-of-concept, either racemic salbutamol or enantiopure levosalbutamol was administered perorally or via inhalation, respectively. A strong preference for sulfonation of (R)-salbutamol for inhalation and peroral application was found in in vivo experiments. In previous studies phenol sulfotransferase 1A3 was described to be mainly responsible for salbutamol sulfonation in humans. Thus, in vitro and in silico investigations of the stereoselectivity of sulfotransferase 1A3 complemented the study and confirmed these findings

    Mind the Gap - Deciphering GPCR Pharmacology Using 3D Pharmacophores and Artificial Intelligence

    Get PDF
    G protein-coupled receptors (GPCRs) are amongst the most pharmaceutically relevant and well-studied protein targets, yet unanswered questions in the field leave significant gaps in our understanding of their nuanced structure and function. Three-dimensional pharmacophore models are powerful computational tools in in silico drug discovery, presenting myriad opportunities for the integration of GPCR structural biology and cheminformatics. This review highlights success stories in the application of 3D pharmacophore modeling to de novo drug design, the discovery of biased and allosteric ligands, scaffold hopping, QSAR analysis, hit-to-lead optimization, GPCR de-orphanization, mechanistic understanding of GPCR pharmacology and the elucidation of ligand–receptor interactions. Furthermore, advances in the incorporation of dynamics and machine learning are highlighted. The review will analyze challenges in the field of GPCR drug discovery, detailing how 3D pharmacophore modeling can be used to address them. Finally, we will present opportunities afforded by 3D pharmacophore modeling in the advancement of our understanding and targeting of GPCRs

    Training of Instrumentalists and Development of New Technologies on SOFIA

    Full text link
    This white paper is submitted to the Astronomy and Astrophysics 2010 Decadal Survey (Astro2010)1 Committee on the State of the Profession to emphasize the potential of the Stratospheric Observatory for Infrared Astronomy (SOFIA) to contribute to the training of instrumentalists and observers, and to related technology developments. This potential goes beyond the primary mission of SOFIA, which is to carry out unique, high priority astronomical research. SOFIA is a Boeing 747SP aircraft with a 2.5 meter telescope. It will enable astronomical observations anywhere, any time, and at most wavelengths between 0.3 microns and 1.6 mm not accessible from ground-based observatories. These attributes, accruing from the mobility and flight altitude of SOFIA, guarantee a wealth of scientific return. Its instrument teams (nine in the first generation) and guest investigators will do suborbital astronomy in a shirt-sleeve environment. The project will invest $10M per year in science instrument development over a lifetime of 20 years. This, frequent flight opportunities, and operation that enables rapid changes of science instruments and hands-on in-flight access to the instruments, assure a unique and extensive potential - both for training young instrumentalists and for encouraging and deploying nascent technologies. Novel instruments covering optical, infrared, and submillimeter bands can be developed for and tested on SOFIA by their developers (including apprentices) for their own observations and for those of guest observers, to validate technologies and maximize observational effectiveness.Comment: 10 pages, no figures, White Paper for Astro 2010 Survey Committee on State of the Professio

    Profiling endogenous adrenal function during veno-venous ECMO support in COVID-19 ARDS: a descriptive analysis

    Get PDF
    BackgroundProlonged critical illness is often accompanied by an impairment of adrenal function, which has been frequently related to conditions complicating patient management. The presumed connection between hypoxia and the pathogenesis of this critical- illness- related corticosteroid insufficiency (CIRCI) might play an important role in patients with severe acute respiratory distress syndrome (ARDS). Since extracorporeal membrane oxygenation (ECMO) is frequently used in ARDS, but data on CIRCI during this condition are scarce, this study reports the behaviour of adrenal function parameters during oxygenation support with veno-venous (vv)ECMO in coronavirus disease 2019 (COVID-19) ARDS.MethodsA total of 11 patients undergoing vvECMO due to COVID-19 ARDS at the Medical University of Vienna, who received no concurrent corticosteroid therapy, were retrospectively included in this study. We analysed the concentrations of cortisol, aldosterone, and angiotensin (Ang) metabolites (Ang I–IV, Ang 1–7, and Ang 1–5) in serum via liquid chromatography/tandem mass spectrometry before, after 1 day, 1 week, and 2 weeks during vvECMO support and conducted correlation analyses between cortisol and parameters of disease severity.ResultsCortisol concentrations appeared to be lowest after initiation of ECMO and progressively increased throughout the study period. Higher concentrations were related to disease severity and correlated markedly with interleukin-6, procalcitonin, pH, base excess, and albumin during the first day of ECMO. Fair correlations during the first day could be observed with calcium, duration of critical illness, and ECMO gas flow. Angiotensin metabolite concentrations were available in a subset of patients and indicated a more homogenous aldosterone response to plasma renin activity after 1 week of ECMO support.ConclusionOxygenation support through vvECMO may lead to a partial recovery of adrenal function over time. In homogenous patient collectives, this novel approach might help to further determine the importance of adrenal stress response in ECMO and the influence of oxygenation support on CIRCI

    The role of stellar mass and environment for cluster blue fraction, AGN fraction and star-formation indicators from a targeted analysis of Abell 1691

    Get PDF
    We present an analysis of the galaxy population of the intermediate X-ray luminosity galaxy cluster, Abell 1691, from SDSS and Galaxy Zoo data to elucidate the relationships between environment and galaxy stellar mass for a variety of observationally important cluster populations that include the Butcher-Oemler blue fraction, the active galactic nucleus (AGN) fraction and other spectroscopic classifications of galaxies. From 342 cluster members, we determine a cluster recession velocity of 21257+/-54 km/s and velocity dispersion of 1009^+40_-36 km/s and show that although the cluster is fed by multiple filaments of galaxies it does not possess significant sub-structure in its core. We identify the AGN population of the cluster from a BPT diagram and show that there is a mild increase in the AGN fraction with radius from the cluster centre that appears mainly driven by high mass galaxies (log(stellar mass)>10.8). Although the cluster blue fraction follows the same radial trend, it is caused primarily by lower mass galaxies (log(stellar mass)<10.8). Significantly, the galaxies that have undergone recent star-bursts or are presently star-bursting but dust-shrouded (spectroscopic e(a) class galaxies) are also nearly exclusively driven by low mass galaxies. We therefore suggest that the Butcher-Oemler effect may be a mass-dependant effect. We also examine red and passive spiral galaxies and show that the majority are massive galaxies, much like the rest of the red and spectroscopically passive cluster population. We further demonstrate that the velocity dispersion profiles of low and high mass cluster galaxies are different. Taken together, we infer that the duty cycle of high and low mass cluster galaxies are markedly different, with a significant departure in star formation and specific star formation rates observed beyond r_200 and we discuss these findings.Comment: 17 pages, 14 figures (one degraded due to size constraints), accepted for publication in MNRA

    Mobility in a Globalised World

    Get PDF
    The term mobility has different meanings in the following academic disciplines. In economics, mobility is the ability of an individual or a group to improve their economic status in relation to income and wealth within their lifetime or between generations. In information systems and computer science, mobility is used for the concept of mobile computing, in which a computer is transported by a person during normal use. Logistics creates, by the design of logistics networks, the infrastructure for the mobility of people and goods. Electric mobility is one of today’s solutions from engineering perspective to reduce the need of energy resources and environmental impact. Moreover, for urban planning, mobility is the crunch question about how to optimize the different needs for mobility and how to link different transportation systems. The conference “Mobility in a Globalised World” took place in Iserlohn, Germany, on September 14th – 15th, 2011. The aim of this conference was to provide an interdisciplinary forum for the exchange of ideas among practitioners, researchers, and government officials regarding the different modes of mobility in a globalised world, focusing on both domestic and international issues. The proceedings at hand document the results of the presentations and ensuing discussions at the conference

    The genomic and transcriptional landscape of primary central nervous system lymphoma

    Get PDF
    Primary lymphomas of the central nervous system (PCNSL) are mainly diffuse large B-cell lymphomas (DLBCLs) confined to the central nervous system (CNS). Molecular drivers of PCNSL have not been fully elucidated. Here, we profile and compare the whole-genome and transcriptome landscape of 51 CNS lymphomas (CNSL) to 39 follicular lymphoma and 36 DLBCL cases outside the CNS. We find recurrent mutations in JAK-STAT, NFkB, and B-cell receptor signaling pathways, including hallmark mutations in MYD88 L265P (67%) and CD79B (63%), and CDKN2A deletions (83%). PCNSLs exhibit significantly more focal deletions of HLA-D (6p21) locus as a potential mechanism of immune evasion. Mutational signatures correlating with DNA replication and mitosis are significantly enriched in PCNSL. TERT gene expression is significantly higher in PCNSL compared to activated B-cell (ABC)-DLBCL. Transcriptome analysis clearly distinguishes PCNSL and systemic DLBCL into distinct molecular subtypes. Epstein-Barr virus (EBV)+ CNSL cases lack recurrent mutational hotspots apart from IG and HLA-DRB loci. We show that PCNSL can be clearly distinguished from DLBCL, having distinct expression profiles, IG expression and translocation patterns, as well as specific combinations of genetic alterations

    Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV

    Get PDF
    Many measurements and searches for physics beyond the standard model at the LHC rely on the efficient identification of heavy-flavour jets, i.e. jets originating from bottom or charm quarks. In this paper, the discriminating variables and the algorithms used for heavy-flavour jet identification during the first years of operation of the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13 TeV, are presented. Heavy-flavour jet identification algorithms have been improved compared to those used previously at centre-of-mass energies of 7 and 8 TeV. For jets with transverse momenta in the range expected in simulated tt‾\mathrm{t}\overline{\mathrm{t}} events, these new developments result in an efficiency of 68% for the correct identification of a b jet for a probability of 1% of misidentifying a light-flavour jet. The improvement in relative efficiency at this misidentification probability is about 15%, compared to previous CMS algorithms. In addition, for the first time algorithms have been developed to identify jets containing two b hadrons in Lorentz-boosted event topologies, as well as to tag c jets. The large data sample recorded in 2016 at a centre-of-mass energy of 13 TeV has also allowed the development of new methods to measure the efficiency and misidentification probability of heavy-flavour jet identification algorithms. The heavy-flavour jet identification efficiency is measured with a precision of a few per cent at moderate jet transverse momenta (between 30 and 300 GeV) and about 5% at the highest jet transverse momenta (between 500 and 1000 GeV)
    • …
    corecore